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A B S T R A C T

Many hydroelectric dams in the Brazilian Amazon have been constructed, but how dam construction influences
land-cover change has not been fully examined. For our research, we selected Belo Monte hydroelectric dam, the
third-largest dam in the world, to explore its impacts on major land-cover change. Multitemporal Landsat images
between 2006 and 2017 were used. The maximum likelihood classifier was used to classify these Landsat images
into primary forest, secondary forest, agropasture, man-made bare land, natural bare land, and water. The land-
cover change was examined using the post-classification comparison approach based on different stages of dam
construction, and was further examined along the upstream and downstream river buffer. The results indicate
that overall classification accuracies of 89.7% and 92.3% were obtained for the 2011 and 2015 land-cover
classification results, respectively. Primary forest decreased continuously from 47.8% in 2006 to 35.3% in 2017.
Different stages of dam construction had various impacts, that is, before dam construction, deforestation and
agropasture expansion were the major land-cover change categories; during dam construction, the increased
area of man-made bare lands, the canal construction zone, and the increased area of natural bare lands
downstream were obvious, in addition to deforestation and agropasture dynamics; when dam construction was
complete, water bodies increased considerably upstream and decreased downstream. These big changes in water
bodies may have long-term impacts on ecosystem functions and environments. This research provides new in-
sights on the impacts of dam construction on land-cover changes, which is valuable for making better decisions
about water and land resources.

1. Introduction

Since the 1970s, economic development, industrialization, and de-
mographic growth have resulted in increasing demand for energy. This
developmental pathway has led to strategies that give priority to the
expansion of electric energy production (Bermann, 2001; Moretto,
Gomes, Roquetti, & Jordão, 2012). As happened earlier in the USA and
Europe, the strategy in Brazil gave importance to the construction of
hydroelectric dams (Moran, 2016), and with priority given to the region
with the highest hydroelectric potential: The Amazon. The region has a
high potential for production of energy estimated at 77 GW (Brasil,
2007) and is considered the frontier for hydropower development with

352 dams planned, of which 96 will be hydroelectric and 256 will be
smaller ones capable of generating energy (Aneel, 2017). The Belo
Monte dam on Xingu River is the largest one in the Amazon.

Studies conducted in the 1970s projected the construction of up to
six large dams that would have created flooded areas covering
17,610 km2 (Sevá, 2005). The negative impacts associated with these
projects, especially the flooding of territories of 37 indigenous groups,
led to social mobilization opposing the construction of dams, with na-
tional and international attention brought to bear (Fearnside, 2015,
2017). These considerations, as well as difficulties in financing such
dams in the 1990s (Moretto et al., 2012), kept the project from going
forward. In the first decade of the 21st century, the project came back to
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life as a response to concerns with deficits in energy production due to
lower precipitation and lower energy production in existing dams—and
a lack of planning and investment in the energy sector (Fearnside, 2003;
Hage, 2012). Up to 2002, the energy matrix of Brazil depended on
hydropower for 80% of energy production (Aneel, 2002), a situation of
high risk due to a lack of diversified energy sources.

To speed up construction of Belo Monte, the Brazilian government
and the construction companies redesigned the project to reduce the
size of the area to be flooded to avoid flooding indigenous areas. This
redesign increased the power production and made the project the third
largest in the world in terms of energy production, i.e., 11 GW. The
magnitude of the project—the largest infrastructure project undertaken
by the government during the first decade of the 21st centur-
y—provoked the largest resettlement of people and greatest negative
environmental impacts (Maia, Guerra, & Calvi, 2017). It led to rapid
population increase (Moran, 2016), expansion of the urban area, and
changes in the landscape (Feng et al., 2017).

The impacts of dam construction on population displacement,
fisheries, biodiversity loss, and ecosystem functions and services have
long been recognized (Fearnside, 2014, 2016, 2017). Chen, Powers, de
Carvalho, and Mora (2015) examined the impacts of the Tucuruí Dam
in the State of Pará, Brazil, on deforestation and degradation, but the
impacts may be much more extensive and intensive in Belo Monte, and
would include other land covers too. Studying the effects of Belo Monte
dam on the surrounding environment is highly relevant given the scale
and importance of the project for the local area, and because it is just
one of many hydropower dams planned for the Amazon region. Un-
derstanding the land-cover transformations is also relevant to discus-
sions of climate change, and to debates over the impacts that dams have
on land-cover change. There has been a notable lack of assessments of
the areas transformed by the building of dams and filling of reservoirs.
In the past, construction companies have routinely underestimated the

areas flooded by dams and the land-cover changes resulting therefrom.
It is important to understand how different stages of dam con-
struction—before, during, and after influence land-cover change.

The unique characteristic of remotely sensed data in data collection
and representation of land surfaces has made it the primary data source
for land-use/cover classification and change detection in the past four
decades. A large number of studies have been conducted to explore the
approaches to improve land-cover classification (see the review paper
by Lu & Weng, 2007) and change detection accuracies (see the review
papers by Lu, Mausel, Brondízio, & Moran, 2004, 2014). Although
many classifiers such as maximum likelihood classifier (MLC),
minimum distance, decision tree, and artificial neural network are
available (M. Li, Zang, Zhang, Li, & Wu, 2014; Lu & Weng, 2007; Salah,
2017), MLC is often used for land-cover classification because it can
provide similar or even more accurate classification results, especially
when only spectral bands are used (G. Li, Lu, Moran, & Hetrick, 2011,
2012; Lu, Li, Moran, Dutra, & Batistella, 2011, 2012). Considering re-
mote sensing–based change detection techniques, most of the algo-
rithms such as principal component analysis, image differencing, and
regression can only detect binary change and non-change information
(Coppin, Jonckheere, Nackaerts, Muys, & Lambin, 2004; Erasu, 2017;
Lu et al., 2004; Singh, 1989). However, in reality, we need to know the
detailed “from-to” land-cover change trajectories (Lu, Li, & Moran,
2014). The post-classification comparison is commonly used for de-
tecting land-cover trajectories (Han, Zhang, & Zhou, 2018; Lu, Li,
Moran, & Hetrick, 2013; Tewkesbury, Comber, Tate, Lamb, & Fisher,
2015; Zhu, 2017). The key is to develop accurate land-cover classifi-
cation result for each date.

Considering the stages of dam construction in this research, remote
sensing data availability, and the characteristics of landscape under
investigation, multitemporal Landsat images from 2006 to 2017 were
selected to examine land-cover distribution and dynamic changes. The

Fig. 1. Location of the study area (a) and color composites in 2011 (b) and 2016 (c) with Landsat spectral bands NIR, red, and green mapped in RGB. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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objective of this research was to examine the impacts of different dam
construction stages on land-cover changes, especially deforestation,
urbanization, dynamic change between secondary forest and agro-
poasture, and water area change in this region. Through this analysis,
we can better understand the relationships between dam construction
and land-cover change, providing fundamental data sources for making
better decisions in land resource management.

2. Study area

The study region is located among the northeastern municipalities
of Altamira in Pará State in the eastern Amazon (Fig. 1). The area was
first occupied by indigenous people who were resettled with the arrival
of the construction crews of the TransAmazon Highway in 1971. The
urban area of Altamira had been a trading center for wild rubber that
saw its economic peak between 1870 and 1912, and a smaller boom
during World War II when supplies from Malaysia were cut off by the
Japanese and the Allies turned to Brazil to increase production needed
for the war effort (Moran, 1975, 1981). Between 1971 and 2010, the
Altamira region was a prosperous agropastoral region, blessed with
good soils and hardworking people who came to settle along the
highway (Moran, 2016). Studies in the area over the years have tracked
the occupation of the area, its land-use changes, and the gradual
dominance of cattle and cocoa in many of the farms. The major land
covers include primary forest, secondary forest, cocoa plantations,
agricultural lands, pastures, bare soils, impervious surfaces, and water.
The study area is in moist tropical region with annual precipitation as
high as 2700mm in 2006 and as low as 1600mm in 2015 based on
local weather station data. The dry season begins in June and lasts until
October.

Discussion of a dam in the region goes as far back as the 1970s when
geologists identified what they thought were ideal conditions for hy-
dropower generation. However, the plans proposed met strong oppo-
sition from indigenous groups and from civil society concerned with the
negative social and environmental impacts of a large dam. Only in
2010, by presidential fiat, was the authorization to begin construction
given (Moran, 2016). The construction began in 2011 and finished in
2016 (though installation of all 24 turbines will not be complete until
2019). Thus, for the purposes of this analysis, we have divided the
changes into three major stages: preparation stage before 2011, con-
struction stage between 2011 and 2015, and finished stage after 2016
when the reservoirs were filled. The land-cover changes were con-
siderably different in each time period, and it is necessary to examine
the different change trajectories to understand the impacts of dam
construction on land-use/cover change in this region.

3. Materials and methods

3.1. Collection and preprocessing of remote sensing data

In the Brazilian Amazon, cloud cover is often a problem resulting in
difficulty of collecting good-quality optical sensor data (Asner, 2001),
and cloud-free Landsat images for certain years were not available for
our research, as shown in Table 1. For example, there are no useful
images for the years of 2012–2014. There are some clouds and shadows
in the Landsat Thematic Mapper (TM) images in 2006, 2008, 2011, and
Landsat Operational Land Imager (OLI) in 2016, and we had to replace
them with other Landsat images. The images were atmospherically
calibrated with the dark-object subtraction approach (Chander,
Markham, & Helder, 2009; Chavez, 1996). The images with clouds/
shadows were then normalized with another image using the relative
calibration approach based on unchanged objects in both images
(Vicente-Serrano, Perez-Cabello, & Lasanta, 2008) to replace clouds and
shadows. Fmask was used to detect clouds and shadows in the Landsat
images (Qiu, He, Zhu, Liao, & Quan, 2017). Topographic correction was
not conducted for these images due to the lack of good-quality digital

elevation model data and because the terrain did not seriously affect the
surface reflectance in this region.

The Satellite Pour l’Observation de la Terre (SPOT) imagery, ac-
quired on August 19, 2015, was used to collect sample plots of different
land covers based on visual interpretation. The SPOT image has four
multispectral bands (e.g., three visible bands and one near-infrared
band) with 6m spatial resolution and one panchromatic band with
1.5 m spatial resolution. In order to improve visual interpretation ef-
fectiveness, improvement of spatial resolution through data fusion is
helpful (Lu et al., 2011; Pohl & van Genderen, 1998; Zhang, 2010).
Based on comparison of common data fusion approaches, such as
principal component analysis, intensity-hue-saturation, and Gram-
Schmidt Pan Sharpening (GS), the GS fusion approach was used for the
fusion of the SPOT multispectral and panchromatic data because this
approach can keep the fidelity of spectral features while improving
spatial resolution, a conclusion similar to previous research (e.g.,
Karathanassi, Kolokousis, & Ioannidou, 2007; Laben & Brower, 2000).
In addition to the high spatial resolution images, a large number of
sample plots with different land covers (e.g., primary forest, secondary
forest, cocoa plantations, pasture, impervious surfaces, bare soils,
agricultural lands) were collected during fieldwork with GPS in August
2015.

3.2. Land-cover classification and accuracy assessment

Based on our field survey and research objectives, we designed a
classification system of six land covers: primary forest (PF), secondary
forest (SF), agropasture (AP), man-made bare land (ML), natural bare
land (NL), and water (WA). Here ML represents the impervious surfaces
(e.g., buildings, roads) and bare soils produced in the dam and canal
construction areas by human activities. NL is referred to as bare lands
(e.g., mud, sand, rocks) along the rivers due to WA decrease. In this
study area, cocoa plantations were rapidly expanded. Our field survey
indicated that they have various densities and are often mixed with
other tree species. Their stand structure is more like SF than pasture,
and cocoa plantations cannot be successfully separated from SF in
Landsat images, thus they were grouped into the SF category.

Before reducing the number of land covers for our research, the
initial land-cover types included impervious surfaces, bare lands near
the buildings and in the construction zones, bare lands along the rivers,
WA, PF, initial/intermediate/advanced succession (different stages of
SF), pasture, and croplands. Clouds and shadows were also selected as
special types during the classification procedure. Based on field survey
and visual interpretation of the 2015 SPOT fused image with 1.5 m
spatial resolution, a total of 360 sample plots with a minimum number
of 30 plots for each land-cover type were collected in 2015. These
training samples were selected from the 2015 Landsat OLI data with
window sizes of 3 by 3 or 5 by 5, depending on the patch sizes of dif-
ferent land covers. The separability analysis with transformed diver-
gence was conducted to optimize the training samples for each land
cover (Mausel, Kramber, & Lee, 1990). The training samples for each
land cover were overlaid on the 2016 and 2017 Landsat color compo-
sites separately to modify the land covers based on visual interpreta-
tion. Meanwhile, a total of 350 sample plots from 2011 were selected
from the RapidEye image and overlaid on the 2006 and 2008 Landsat
color composites for modification.

MLC was used to classify Landsat multispectral imagery based on
training samples. The classified image was further modified using ma-
jority filtering with a window size of 3 by 3 pixels to remove the salt-
and-pepper problem (Erasu, 2017; Lu & Weng, 2007). In the classified
images, a very limited number of clouds and shadows still existed, and
they were modified based on visual interpretation on the color com-
posites. For all the classified images, some expert rules were further
used to improve the classification results. For example, if the pixels
were classified as SF in one image but PF on the posterior date, the
pixels in the posterior image were modified to SF. In this way, the
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confusion between PF and advanced SF was reduced. ML and NL were
difficult to separate based on their spectral signatures, but their dis-
tribution had specific characteristics to help in separation; for example,
ML was located mainly in the dam and canal construction areas, and NL
was located along the river due to the decreased WA. ML was also
confused with some agricultural lands after harvest because of their
similar spectral features, but knowing their different spatial distribu-
tions enabled us to separate them.

Accuracy assessment was conducted using the error matrix–based
approach (Congalton & Green, 2008; Foody, 2002). A stratified random
sampling approach was used, and a total of 300 sample plots with a
minimum of 30 sample plots for each land-cover type were selected.
The field survey data and fused SPOT image of 2015 were used to
support the identification of reference data for evaluation of the 2015
Landsat image classification results. Meanwhile, the RapidEye images
from 2011 were also used to collect sample plots for validation of the
2011 land-cover classification result. Because no field survey data and/
or high spatial resolution images were available for other years for land-
cover classification, no accuracy assessment was conducted. From the
error matrix, overall classification accuracy and kappa coefficient were
used to assess the overall classification results; producer's and user's
accuracies were used to evaluate each land-cover classification result
(Congalton & Green, 2008).

3.3. Analysis of land-cover change detection and impacts of dam
construction

The land-cover change analysis was conducted using the post-

classification comparison approach at the different stages between
2006 and 2017. Based on data availability and the time period of dam
construction, the change detection periods are separated into five
stages, as summarized in Table 2. The dam construction may con-
siderably influence the nearby land-cover change, especially WA, ML,
NL, and AP. Therefore, in addition to the analysis of land-cover change
trajectories over the entire study area, more emphasis is on the land-
cover change along the river. Considering the spatial resolution of
Landsat imagery (i.e., 30 m), the spatial patterns of river distribution,
and extent of the study area, a buffer zone of 2 km along both sides of
the river was produced based on the classified water data (e.g., river
here) in 2006 (see Fig. 2). The 2 km buffer seems optimal, because a
too-small buffer would not have included a sufficient number of pixels
away from the river, while a too-large buffer would have extended
beyond the boundary of the study area. Meanwhile, the newly estab-
lished dam was selected to separate the river into upstream and
downstream to further examine the different impacts of this dam con-
struction on land-cover changes.

4. Results

4.1. Analysis of land-cover classification results

The overall classification accuracies for 2011 and 2015 (Table 3)
were 89.7% and 92.3%, respectively. The major errors were from the
confusions between advanced succession SF and PF due to their similar
forest stand structures, between initial succession SF and AP (e.g., dirty
pasture), and between AP and ML (similar features between croplands

Table 1
Datasets used in research.

Dataset Image acquisition dates Description

Landsat 8 OLI (path/row:
225/62)

July 20, 2017
August 2, 2016 (July 17,
2016)
July 15, 2015

Six Landsat multispectral bands (visible, near-infrared, and short-wavelength infrared) with spatial resolution of
30m were used for land-cover classification.

Landsat 5 TM July 4, 2011 (July 27, 2011)
July 11, 2008 (June 23, 2007)
June 20, 2006 (June 4, 2006)

SPOT 6 August 19, 2015 Four multispectral bands with spatial resolution of 6 m and one panchromatic band with1.5m. The Gram-
Schmidt Pan Sharpening approach was used to integrate both multispectral and panchromatic data into a new
data, and the fused image was used to collect sample plots for different land covers through visual
interpretation.

RapidEye July 28, 2011 Ground sampling distance (nadir): 6.5 m; pixel size: 5m. The RapidEye image was used to collect validation
samples for evaluation of land-cover classification in 2011.

Fieldwork August 2015 Many samples for different land-cover types were collected and randomly selected for use as training samples
and test samples.

Weather data January 2006–August 2017 Temperature, precipitation, evaporation, etc. were collected

Note: TM, Thematic Mapper; OLI, Operational Land Imager; SPOT, Satellite Pour l’Observation de la Terre.

Table 2
A summary of different stages of Belo Monte dam construction.

Time Stages Description of key events at each stage

2006–2008 Before dam construction Studies begin on environmental impact;
Farmers continue to expand pastures and cultivated areas

2008–2011 Preparation for dam construction Completion of environmental impact studies;
License to start building the dam issued;
Start of construction and roads paved to improve infrastructure capacity;
Families notified of impending resettlement;
Farmers start reducing their activities near the reservoir-to-be

2011–2015 Middle stage of dam construction Hundreds of families resettled compulsorily;
Removal of vegetation from future reservoir area;
Authorization to fill the reservoir and issuing license to operate

2015–2016 Near-completion stage Advanced stage of construction;
Areas no longer needed for construction begin to be ceded to farmers to reoccupy;
Start of energy production

2016–2017 After-completion stage Drought brings about difficulties in navigation
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in dry season and bare soils). The land-cover classification results from
2006 to 2017 (Fig. 3) clearly show the increased WA area along the
canal in 2016 and 2017 and decreased WA area downstream. Another
obvious change was the increased ML in 2015 due to the canal con-
struction, then most ML area was replaced with WA in 2016 due to the
completion and operation of the dam.

Overall, PF decreased considerably from 47.8% in 2006 (2178 km2)
to 35.3% in 2017 (1608 km2), SF remained stable, except decreasing
between 2008 and 2011 by about 2% (Table 4). AP area increased
before the dam construction (2006–2011), and remained stable during

and after dam construction. The proportion of ML was small before the
dam construction, but sharply increased in 2015, as shown in Fig. 3,
due to the canal construction, then decreased in 2016 due to the in-
creased WA. NL had a small proportion in 2006, but sharply increased
in 2008, and continuously increased from 2015 to 2017; as shown in
Fig. 3, the decreased WA downstream resulted in the NL increase along
the river.

Fig. 2. Analysis of 2-km-wide buffer zones along the river upstream and downstream from the Belo Monte dam in Brazil using the base of a 2006 image.

Table 3
Accuracy assessment of land-cover classification results in 2011and 2015.

Year Type Reference data Overall accuracy

PF SF AP ML NL WA CT RT UA PA

2011 PF 103 1 0 1 1 0 106 108 97.2 95.4 OA=89.7%
KC=0.87SF 4 23 2 0 0 0 29 31 79.3 74.2

AP 0 7 64 6 1 0 78 70 82.1 91.4
ML 0 0 4 23 0 0 27 30 85.2 76.7
NL 0 0 0 0 27 2 29 30 93.1 90.0
WA 1 0 0 0 1 29 31 31 93.5 93.5

2015 PF 104 2 1 0 0 1 108 106 96.3 98.1 OA=92.3%
KC=0.90SF 2 27 3 0 0 0 32 33 84.4 81.8

AP 0 4 63 4 2 0 73 71 87.7 90.1
ML 0 0 4 26 0 0 30 30 90.0 90.0
NL 0 0 0 0 28 0 28 30 100.0 93.3
WA 0 0 0 0 0 29 29 30 100.0 96.7

Note: PF, primary forest; SF, secondary forest; AP, agropoasture; ML, man-made bare land; NL, natural bare land; WA, water; CT, column total; RT, row total; UA,
user's accuracy; PA, producer's accuracy; OA, overall classification accuracy; KC, kappa coefficient.
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4.2. Analysis of land-cover change detection results

Table 5 indicates that during the whole detection period between
2006 and 2017, PF and SF decreased, but AP, ML, NL, and WA in-
creased, and the major changes were PF deforestation and AP and NL
expansions. However, the average annual change rates varied

considerably in different detection periods. For example, between 2006
and 2008, PF deforested area almost equaled AP expansion area, and
the increased NL area almost equaled the decreased WA area. Between
2008 and 2011, the PF and SF losses were due to AP expansion; how-
ever, between 2011 and 2015, the PF loss was due to ML increase, and
the WA loss resulted in the NL increase, as shown in Fig. 4. A big

Fig. 3. Spatial distribution of land covers at specific points in time in the area surrounding the Brazilian Belo Monte dam (constructed 2011–2015).

X. Jiang et al. Applied Geography 97 (2018) 35–47

40



difference in Table 5 shows that between 2015 and 2016, the large
decreases in PF, AP, and ML resulted in large increases for WA and NL
due to the completed dam construction, whereas between 2016 and
2017, the PF deforestation resulted in the increases in ML, NL, and WA.
These changes in different land covers were related to the stages of dam
construction. As shown in Fig. 4, the major changes in WA, ML, and NL
occurred along the river and the newly constructed canal in the central
part of this study area. For example, the large increase in WA in the
central part and upstream occurred between 2015 and 2016 due to the
completed dam and canal construction (Fig. 4a1); the large increase in
ML occurred between 2011 and 2015 in the central part due to the
canal construction (Fig. 4b1).

Table 6 adds to the information provided in Table 5 by providing
details of the trajectories of the land-cover changes. Large deforestation
due to the conversion from PF to SF and AP, large AP expansion at the
cost of PF and SF, and a large decrease in WA due to the conversion to
NL caused by dry weather occurred between 2006 and 2008 (Table 6).
The period between 2008 and 2011 witnessed continuous AP expansion
at the cost of SF, and PF conversion to SF and AP. Another obvious
change in 2008–2011 was the conversion from NL to WA. Conversely,
WA area decreased, and ML and NL increased considerably from 2011
to 2015. The increased ML was mainly from the conversion of PF, SF,
and AP, and the increased NL was due to the conversion of WA in this
period. A huge dynamic change between 2015 and 2016 was the in-
creased WA from the conversion of AP, ML, and NL upstream, and the
conversion of WA to NL downstream. Deforestation due to the con-
version from PF to SF and AP and dynamic changes between SF and AP
were obvious. The completion of dam construction resulted in con-
siderably different land-cover changes compared to previous detection
periods. In 2016 and 2017, the area with land-cover changes was much
smaller than in previous years, although deforestation still occurred and
upstream WA increased continuously. Fig. 5 clearly shows the spatial

patterns of major land-cover change trajectories. The most obvious
changes occurred along the river and the newly constructed canal in
2011–2015 and 2015–2016.

4.3. The impacts of dam construction on land-cover change

Dam construction indeed considerably influenced the water dis-
tribution—the total water areas changed from 377.6 to 464.3 km2 be-
tween 2006 and 2011 (before dam construction) to 362.5–386.4 km2

(during and after dam construction) (see Table 7). In particular, the
water areas upstream and downstream before and after dam construc-
tion changed significantly. For example, the upstream water area was
120.5–129.0 km2 before the dam was constructed (i.e., before 2015),
much smaller than the area of 183.8–199.9 km2 after the dam was
completed and functioning in 2016–2017. Conversely, the downstream
water area was 241.3–335.3 km2 before 2015, much higher than the
area of 186.5–193.3 km2 in 2016–2017. Fig. 6 clearly shows the spatial
patterns of water changes upstream and downstream and in the newly
constructed canal, which redirects water to the turbines. These results
show that dam construction resulted in considerable increase in water
area upstream and decrease downstream, in addition to the increased
water area along the canal in the central part of this study area.

Table 8 provides further detailed WA change trajectories. In
2006–2008, very limited WA area increased along the river, but the
conversion from WA to NL reached 38.3 km2 downstream. In
2008–2011, an obvious WA change was inundation of the NL area
(about 10.2 km2) downstream. Conversely, the major WA change was
the conversion to NL in 2011–2015. After dam construction was fin-
ished in 2016, WA increased by 64 km2 upstream at the cost of mainly
AP, ML, and NL, but decreased by 53 km2 downstream and converted to
NL. The year 2016–2017 had a WA change similar to that in
2015–2016, but in a much smaller area. The results in Table 8 docu-
ment the great impacts of dam construction on WA change in the up-
stream and downstream regions. The impacts of different stages of dam
construction on land-cover change can be summarized as follows:

1) Before stage (before 2011): The major land-cover changes included
deforestation (from PF to AP and SF), agricultural expansion (from
PF and SF to AP), and the dynamic change between SF and AP. The
change between WA and NL was mainly due to the weather condi-
tions.

2) Middle stage (2011–2015): Deforestation was obvious, but almost
evenly converted to SF, AP, and ML. SF remained stable, but gained
from the conversion of PF to SF and lost due to the conversion from
SF to AP. The important changes were the increased area of ML near
the dam construction site and the canal construction zone due to
conversion from PF, SF, and AP, and the increased area of NL due to
conversions from WA and PF.

3) Near completion stage (2015–2016): The land-cover change in this
period was considerably different from other periods. The decreased
area in PF, AP, and ML resulted in large, increased areas of WA and
NL. The finished dam construction greatly influenced the land-cover
change; for example, WA area increased considerably upstream and

Table 4
Area and percentage of each land cover at specific years.

Land cover Area (km2) of each land cover at specific years

2006 2008 2011 2015 2016 2017

Primary forest 2177.88 2014.22 1899.76 1743.73 1655.35 1608.49
Secondary forest 729.56 732.72 637.15 634.34 641.78 633.82
Agropasture 1078.36 1241.51 1425.82 1422.88 1381.91 1384.40
Man-made bare

land
23.27 23.89 28.27 158.91 102.41 115.01

Natural bare land 38.70 123.04 105.37 183.76 229.14 252.05
Water 507.82 420.20 459.22 411.98 545.01 561.83

Percentages of each land cover at specific years

Primary forest 47.81 44.21 41.70 38.28 36.34 35.31
Secondary forest 16.01 16.08 13.99 13.92 14.09 13.91
Agropasture 23.67 27.25 31.30 31.23 30.33 30.39
Man-made bare

land
0.51 0.52 0.62 3.49 2.25 2.52

Natural bare land 0.85 2.70 2.31 4.03 5.03 5.53
Water 11.15 9.22 10.08 9.04 11.96 12.33

Note: Percentage of the ith land cover (Ai) to total area (A): Ai% = (Ai/A)*100.

Table 5
Changed area (km2) of each land cover at different detection periods.

Type Overall changed area (km2) (2006–2017) Annual changed area (km2)

2006–2008 2008–2011 2011–2015 2015–2016 2016–2017

Primary forest −569.40 −81.83 −38.15 −39.01 −88.38 −46.86
Secondary forest −95.74 1.58 −31.86 −0.70 7.44 −7.96
Agropasture 306.04 81.58 61.44 −0.74 −40.97 2.49
Man-made bare land 91.73 0.31 1.46 32.66 −56.50 12.60
Natural bare land 213.35 42.17 −5.89 19.60 45.38 22.91
Water 54.01 −43.81 13.01 −11.81 133.02 16.82
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along the canal (from the conversion of AP, ML, and NL to WA), and
decreased downstream as it converted to NL. The changes in ML and
NL were obvious due to the conversions between ML or NL and WA
in different locations. Deforestation was obvious, but went to

different land covers (e.g., SF, AP, NL, and WA). The change in AP
was also obvious due to the AP expansion in some locations but AP
conversion to ML or SF in other locations.

4) After completion stage (after 2016): The big change was the

Fig. 4. Spatial distribution of land-cover change trajectories near the Belo Monte dam in Brazil during different detection periods. (a1), (b1), and (c1) represent the
increased water, man-made bare land, and natural bare land, respectively; (a2), (b2), and (c2) represent the lost water, man-made bare land, and natural bare land,
respectively.
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increased WA area upstream and the decreased WA area down-
stream. The increase upstream was due to filling the reservoir re-
sulting in the conversion of different covers to WA, and the decrease
of WA area downstream resulting in conversion to NL. The dynamic
change between AP and ML, between SF and AP, and deforestation
were also obvious.

5. Discussions

5.1. Improvement of land-cover classification and change detection results

Land-cover distribution is often mapped using classification algo-
rithms such as traditional supervised classifier based on the spectral
features of multispectral bands. However, spectral confusion is common
for some land covers such as different forest types (e.g., advanced
succession and primary forest) and non-vegetation types (e.g., bare soils
and impervious surfaces). In this research, agricultural lands and

pastures in the dry season, man-made bare soils in the construction
areas, bare lands (bare soils, sands, mud) and shallow water along the
river, and different impervious surfaces have similar spectral sig-
natures, which could have resulted in misclassification. However, their
different ecosystem functions make it possible to improve classification
accuracy by modifying the classification results using expert rules.
Since the post-classification comparison approach is based on the ac-
curate classification of each image, it is critical to improve land-cover
classification accuracy. Pixel-based classification approaches such as
MLC, neural network, support vector machine, and decision tree clas-
sifier (G. Li et al., 2011, 2012; Lu et al., 2012) have been used ex-
tensively for land-cover classification, but proper use of object-based
image classification can improve classification accuracy and reduce the
common salt-and-pepper problem, especially when high spatial re-
solution images such as QuickBird are used (Lu, Hetrick, & Moran,
2010; Walsh et al., 2008).

Selection of suitable temporal resolution is an important part of

Table 6
Annual changed area (km2) of land-cover trajectories at different detection periods.

Major change Change Trajectory Annual changed area (km2) at different detection periods

2006–2008 2008–2011 2011–2015 2015–2016 2016–2017

Water change PF–WA 0.78 1.95 2.46 11.97 1.10
SF–WA 0.08 0.20 0.64 15.07 2.06
AP–WA 0.18 0.21 0.75 60.90 6.39
ML–WA 0.00 0.02 0.03 72.06 5.70
NL–WA 0.69 11.70 0.47 30.08 12.83
Gain 1.74 14.07 4.35 190.08 28.06
WA–ML 0.00 0.00 0.60 1.45 1.20
WA–NL 42.49 0.74 13.96 54.65 9.71
Loss 42.50 0.74 14.56 56.10 10.91

Man-made bare land change PF–ML 0.41 0.25 12.12 6.18 4.01
SF–ML 1.14 0.87 8.17 4.98 8.74
AP–ML 4.26 4.19 15.91 27.32 27.85
WA–ML 0.00 0.00 0.60 1.45 1.20
Gain 5.82 5.31 36.81 39.93 41.80
ML–SF 0.52 0.26 0.38 6.45 2.88
ML–AP 4.97 3.50 3.79 18.53 21.61
ML–WA 0.00 0.02 0.03 72.06 5.70
Loss 5.49 3.77 4.20 97.04 30.19

Natural bare land change PF–NL 0.85 4.81 5.17 10.65 13.00
SF–NL 0.00 0.02 0.01 0.16 0.03
AP–NL 0.17 0.24 0.46 6.19 9.45
WA–NL 42.49 0.74 13.96 54.65 9.71
Gain 43.51 5.81 19.60 71.64 32.19
NL–WA 0.69 11.70 0.47 30.08 12.83
Loss 0.69 11.70 0.47 30.08 12.83

Primary forest change PF–SF 59.70 22.30 16.00 36.59 23.65
PF–AP 25.08 14.86 16.84 39.20 25.58
PF–ML 0.41 0.25 12.12 6.18 4.01
PF–NL 0.85 4.81 5.17 10.65 13.00
PF–WA 0.78 1.95 2.46 11.97 1.10
Loss 86.83 44.17 52.60 104.59 67.33

Secondary forest change PF–SF 59.70 22.30 16.00 36.59 23.65
AP–SF 25.66 12.52 24.38 65.50 63.38
ML–SF 0.52 0.26 0.38 6.45 2.88
Gain 85.88 35.09 40.76 108.54 89.91
SF–AP 83.30 64.28 30.44 73.43 79.14
SF–ML 1.14 0.87 8.17 4.98 8.74
SF–NL 0.06 0.16 0.65 5.51 4.79
SF–WA 0.08 0.20 0.64 15.07 2.06
Loss 84.59 65.51 39.91 98.98 94.73

Agropasture change PF–AP 25.08 14.86 16.84 39.20 25.58
SF–AP 83.30 64.28 30.44 73.43 79.14
ML–AP 4.97 3.50 3.79 18.53 21.61
Gain 113.35 82.64 51.07 131.16 126.33
AP–SF 25.66 12.52 24.38 65.50 63.38
AP–ML 4.26 4.19 15.91 27.32 27.85
AP–NL 0.17 0.24 0.46 6.19 9.45
AP–WA 0.18 0.21 0.75 60.90 6.39
Loss 30.26 17.16 41.50 159.91 107.07

Note: PF, primary forest; SF, secondary forest; AP, agropoasture; ML, man-made bare land; NL, natural bare land; WA, water.
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land-cover change detection (Lu et al., 2014; Lunetta, Johnson, Lyon, &
Crotwell, 2004; Reddy, Kumar, Kumar, & Shivapur, 2017; Sala, Parton,
Joyce, & Lauenroth, 1988). Many factors affect this determination: the
availability of remotely sensed data, the detection contents, the char-
acteristics of the study area, and time and labor that can be required for
the detection work. Land-cover change detection in the Brazilian

Amazon basin is often difficult due to cloud cover (Asner, 2001). Our
change detection results between 2011 and 2015 might not have cap-
tured the exact land-cover changes because cloud-free Landsat images
were not available. In recent years, more sensor data such as Sentinel-2
and Landsat 8 OLI are available at no cost, and the application of
Google Earth Engine technology provides a new platform for detecting
detailed, short-term land-cover changes. Future research should focus
on exploring the use of multisource data at short intervals for land-
cover change detection.

5.2. The role and implication of dam construction on land-cover changes

Belo Monte has been a controversial project, with many opposed to
its construction while others tout its benefits. There can be little doubt
of the negative impacts such as blocking the fish migrations, the re-
settlement of over 25,000 people (FGV, 2015; Miranda Neto, 2014),

Fig. 5. Spatial distribution of major land-cover change trajectories upstream and downstream from Belo Monte dam site in Brazil during construction preparation
(2008–2011), construction (2011–2015), and post-construction (2015–2016 and 2016–2017).

Table 7
Summary of upstream and downstream water areas (km2).

Position Total water areas (km2) at different years

2006 2008 2011 2015 2016 2017

Upstream water 129.0 120.5 125.1 121.2 183.8 199.9
Downstream water 335.3 257.1 291.0 241.3 193.3 186.5
Total 464.3 377.6 416.1 362.5 377.1 386.4
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and stressed social services for the urban population that doubled in a
matter of two years during the peak of construction (Marin & Oliveira,
2016). Less discussed in the debate over the pros and cons of Belo
Monte was the measurable changes in land cover that would result
(Fearnside, 2017). This paper aims to correct this oversight. The land-
cover change trajectories and change rates were related to the stages of
dam construction. For example, before or at the initial stage of dam
construction, deforestation and AP expansion were the major land-
cover change processes observed in the landscape, and the changed
areas were located away from the rivers and looked to the TransA-
mazon Highway, not to the river. The dam changed this focus. During
the dam and canal construction stage, ML, including bare soils and
impervious surfaces, sharply increased at the cost of forest and AP, with
very large areas of farms, pastures, and forests changing to bare soil. By
contrast, after the dam construction was completed, water area con-
siderably increased upstream and decreased downstream. This re-
lationship between land-cover changes and the dam construction stages
provides a precise measure of the impact of the construction of the dam
on the region's land cover. In the rush to produce hydropower, the

construction companies, the government, and others interested in the
project did not give adequate consideration to the land-cover changes
they were causing, whom would be negatively affected by these
changes, and whether adequate compensation would be provided. Re-
cognition of these negative outcomes may have inspired the recent
announcement by the Brazilian Ministry of Mines and Energy that they
will no longer build megadams (Ventura, 2018). This was a surprising
change in attitude by Brazil's government, which had long advocated
building many more megadams. Whether this announcement represents
a permanent change, or only a temporary respite, remains to be seen.
Brazil already depends on hydropower for 67% of its energy generation
(Aneel, 2017) and needs to consider diversification if it is to deal with
climate change outcomes and reduce the negative impacts of mega-
dams.

6. Conclusions

This research used Landsat time-series data to analyze land-cover
changes and examined the impacts of the Belo Monte hydroelectric dam

Fig. 6. Spatial distribution of water dynamic change in the area of the Belo Monte dam in Brazil at different detection periods.
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construction on land-cover changes based on different construction
stages. This research shows that without the impacts from dam con-
struction, the major land-cover change in this region would have con-
tinued to be mainly deforestation and AP expansion. However, dam
construction considerably increased these impacts on land-cover
change amounts and trajectories. For example, before dam construc-
tion, deforestation (from PF to AP and SF), agricultural expansion (from
PF and SF to AP), and the dynamic change between SF and AP domi-
nated the land-cover change trajectories. During dam construction
(2011–2015), although deforestation was still obvious, the conversion
from PF to SF and the conversion from SF to AP were also common.
Another important change was the increased area of ML near the dam
and canal construction sites and the increased area of NL downstream.
Near- or after-completion stages (2015–2017) witnessed the decreased
area in PF, AP, and ML and large increased area in WA and NL, that is,
considerably increased WA area upstream and along the canal and the
decreased WA area downstream. Communities living downstream have
already seen a big drop in the river water level, and their fishing ac-
tivities are imperiled if not completely ruined for the foreseeable future.
Upstream, many areas, including parts of the city of Altamira, were
flooded and many vegetated areas had to be removed, or will die over
the coming years as the permanent inundation damages their ability to
survive. Resettled people who used to live by the river upstream from
where the dam now sits are living in the city unable to use their fishing
skills. Fishers despair of the lack of fish and their destroyed livelihoods.
The consequences of these changes in land cover have a human face and
consequences for human well-being that need to be addressed.

Note: The positive value indicates increased area, and negative
value indicates decreased area from prior date to posterior date. The
annual changed area was calculated: annual change area= [A(t2) –
A(t1)]/(t2-t1), where A is the area of each land cover, and t1, and t2 are
the detection periods at two dates.
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